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SMALL DEFORMATIONS SUPERPOSED ON LARGE DEFORMATIONS
| 3
IN MATERIALS WITH FADING MEMORY
by Ae C. Pipkin** and R. S. Rivlin***

1. Introduction

The non~linear stress-deformation relation for materials
with memory has been discussed by Green and Rivlin [l]**** and
Green, Riviin and Spencer [2]. In the present paper we derive
the restricted form applicable to small dynamic deformations
superposed on large static deformationse Although this can be
done by making an appropriate linearization of the final result
of the non-linear theory, we avold scme of the complexities of
that theory by introducing the linearization at an earlier stage.
The results obtained will apply in particular to problems of wave
yropagation in finitely deformed viscoelastic bodies,

It is assumed that the stress depends on the deformation
history, and that the properties of the materlial do not change
with time. The stress components are then hereditary functionals
of the deformation gradientse. Because rigid rotation of a deform~
ed body has no effect on stress, other than to rotate the stress
field, and since the stress-deformation relation must embody

this fact, the relation is of a certain restricted form. This
form was derived by Green and Rivlin [1] by using invariant-

-
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theoretic methods, and subsequently Noll [3] derived an equivalent
forms Noll's derivation is simpler than thet of Green and Rivlin
in that 1t does not make use of invariant theory, but the form

he derives is not suitable for the purposes of the present paper.
In Section 3 we take the opportunity to present a derivation
vhich combines some of the simplicity of Noll's method with the
explicitness of Green and Rivlin's result,

When the deformation consists of an infinitesimal dis=-
placement fleld superimposed on a finite deformation, the stress-
deformation relation can be linearized with respect to the
gradients of the infinitesimal displacement field (Section W),

In a material with fading memory, i1f the finite deformation 1s
held fixed long enough so that the original deforming process
has no further effect, the non-linear functionals specifying
the stress can be expressed in terms of non-linear functions
and linear functionals (Sections 5 and 6) .

The functions appearing in the linearized formulation
are subject to restrictions in form if the material has any
symmetries in its undeformed state (Section 7). In the case of
isotropic materials(Section 8), these restrictions are such
that the constitutive equation can be brought into a simpler

form involving the classical strain tensor (Section 9),



Consider a body in its undeformed state, Let the
coordinates of a generic particle be Xi’ in a fixed Cartesian
coordinate system x, If the body 1s deformed as time progresses,
then the particle which was originally at X1 moves to a new
position Xy at time t, and the deformation may be specified by

giving Xy as a function of Xp and ts

Xy = xi(Xp,t) . (2.1)

The derivatives axi/bxp, called deformation gradients, may be used
as measures of the deformation in the neighborhood of the particle
Xpo

Suppose that the stress at a given particle depends on
the deformation gradients at that particle, not only at the
instant t considered but also at all previous times. The stress
components dij at time t are then functionals of the deformation
gradients at the particle considered. To express this idea, we

write
(+e]

dij(t) = fia[dxp(t:rcio‘t)/axq; t] . (242)

Explicit dependence of the functionals on t indicates
that the intrinsic properties of the material may change as time
progressesy whether the material is subjected to a deformation
or nots This possibility will immediately be rejected, however,
for we assums that the material has the following propertys if
two deformation histories differ only by a time shift, then
the corresponding stress histories differ only by that same time
shifts It 1is easy to seey and correspondingly easy to show



C11-66 3

Consider a body in its undeformed state. Let the
coordinates of a generic particle be Xi, in a fixed Cartesian
coordinate system x, If the body 1s deformed as time progresses,
then the particle which was originally at Xi moves to a new
position Xy at time t, and the deformation may be specified by

giving Xy as a function of Xp and t¢

xi = xi(Xp,t) . (2.1)

The derivatives axi/bxp, called deformation gradients, may be used
as measures of the deformation in the neighborhood of the particle
Xp. |

Suppose that the stress at a given particle depends on
the deformation gradients at that particle, not only at the
instant t considered but also at all previous times. The stress
components'dij at time t are then functionals of the deformation
gradients at ihe particle considered. To express this idea, we

write
o0

t - 'c)/axq; t] . (242)

o”(t) = fiJ[dxp( 2

Explicit dependence of the functionals on t indicates
that the intrinsic properties of the material may change as time
progressesy whether the material 1s subjected to a deformation
or note This possibility will immediately be rejected, however,
for we assums that the material has the following propertys if
two deformation historles differ only by a time shift, then
the corresponding stress historles differ only by that same time
shifts It is easy to see, and correspondingly easy to show
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rigorously, that this assumption implies that the functionals
cannot depend on t explicitly. Thus in place of Eqe (2.2) we

write

o0
(t) = fijtaxp(?r'o‘)/bxq]' . (2.3)

°1J

The functionals are then said to be hereditary.
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3« Botation of the physical svstem

Not every relation of the form (2,3) is physically
meaningful., When an arbitrary rigid rotation 1s superimposed on
a given deformation history, the stress field undergoes an equal
rigid rotation. The form of the constitutive equation must be
such that this condition is satisfied.

Iet Ei'be e deformation history obtained by superimposing
a rigid rotation én the deformatioﬁ xi(t), so that

Ea_(xp,t) = aij(t)xj(Xp,t) . (3.1)

Here the coefficients aij(t) must satisfy the orthogonality condi-

tions
a5 (Blag (t) = ay  (t)ay(£) = by Iaij(t) |= 1, (3.2)

From Eqe (3.1), the deformation gradients for the new deformation

are

aEi(t)/%xp = aij(t)axj(t)/'axp . (343)

Letting aij(t) denote the stress components associated with the
deformation Ei(t), Eqe (243) implies that

o0

; T)/@X ] . (30)1')
=o .

g = X
ij(t) fij[axp(t
The condition to be satisfied is that the components
Eij(t) are related to the components cii(t)~by the rotation aij(t)°

Thus, |

E'ij(t) = aik(t)aJL(tbk&(t) « . (3+5)
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By using Eqs. (2¢3) and (3.4) in Eq. (3.5), and making use of
Egse (3.2) and (3.3), we obtain

o :
fij[axp(§t20¢)/bxq] (3.6)

= aki(t)a£j(t)fk£[apr(t - c)axg(t ;'r)/quJ.
T=

The functionals f,, must be of wch form that Bqe(346) 1s satisfied
no matter what the choice of aij(t) may be, subject to the
restrictions (342)e

We may in particular let aij(t) be the j-component of
vector number i in an orthogonal system, formed from the three
vectors axj/bxl, axj/axz, and axj/bX3 by the Schmidt orthogonali-
zation process, In the first step of this process, alj(t) is
constructed by dividing axj(t)/'ax1 by its length. We thus

obtaln
iy

alj(t) = [c:pn(t)]"2 axj(t)/'ax1 . (3.7)

Here Gll(t) is one of the set of inner products Gpét), called

strain components, which are defined by

axi(t) axi(t)

qu(t) B . (3.8)
oX, 08X, |

Next, we construct the unit vector in the plane of axj/aX1

and axj/bxz, perpendicular to axj/bxl and forming a positive
inner product with axj/bxz. Using the notation.‘Abqﬂt) for the
cofactor of qu(t) in the determinant G(t) = |qu(t)|, this

vector may be written
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o
8p3(8) =[Gy (£)8y3(8)] 2[= G, (£)ox, (8D /0K,

+ Gll(t)axd(t)/axz] ° (349)

Finally, aBJ(t) is taken to be the unit vector perpendicular to
axj/bxl and axj/'aX2 whose inner product with axj/bx3 is
positive. Thus,

. L ox.,(t)
— 2
ag5(t) = [A53(£)G(t)] © [A,5(4) --31(-—--a —

, ax,(t) ax,(t)
+A23(t) —;c%e—— + A33(t) —a-%;—] o (3.10)

We note that G,,(t), A33(t), and G(t) are positive in any
deformation possible in a real materials Equatiéns (3.7), (3+9)
and (3.10) may be abbreviated as

a;4(t) = Gy (B)ox,(t) /o (3.11)

where the coefficients Cik(t) are functions of the strain
components qu(t).

Since the coefficients aij(t) constructed in the manner
described above satisfy the restrictions (342), Eqe (3.6) must
be satisfied for this choice of a,,(t)s Thus, if Eqe (3.11) is
used in Eqe. (3.6), and Eq. (3.8) is used to simplify the expres-

sion for the functional argument, we obtain

. i
[0, (& = ©)/0%, )

=0
C ax, (1) ox,(£) e
MO OO Tl (6 = Dy (4 = ]

T=0 .

ax, (t) ax,(t) : © '
= ?im_"ét" FonlGpq(t = ©1, (say)e (3.12)

T =0
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The second member of this equality is of the form shown in the
last member because the coefficients Cij(t) are functions of
the strain components qu(t).

It 1s thus seen that if Eq, (3.6) is satisfied, the
functionals i‘iJ can be written in the form (3.12)e It is easy
to show that, conversely, if the functionals are of the form
(3412), then Eqe (3¢6) is satisfied for all orthogonal trans=-
formationse The constitutive equation is therefore of the

restricted form

0%, (t) ox,(t) oo
03308 = 5 X Pl (t = D] . (3.13)

We note that since the stress tensor is éymmetric, Fk{,= F&k o



Consider a deformation obtained by superimposing a dis=-

placement field sui(xp,t) on the basic deformation x, = xi(Xp,t)z

i
x:_(Xp,t) = xi(Xp,t) + Sui(xp,t)o (""01)

The stress components corresponding to this deformation arey from

Eqe (3.1
2 (3.13), ax (t) 0% (t)

T -—XL—— F]&&[ t-'t')], (4,2)
O

where the strain components G (t) are those obtained by replacing
xy (£) by x (t) in Eqe (3.8). We wish to obtain the linearized
form of Eq. (442), valid for small enough values of & .
By using Eq. (W4el) and neglecting terms of order 52, we
obtain

* *
axi(t) axi(t) _ axl(t) ax](t) . e[au!(t) axl(t)
ox, (t) ou,(t)
_5‘}%}(_— —5-5}— ]. (443)
2

The strain components G;q(t) appropriate to the new history can
be found by setting i=j in Eq. (4¢3). Thus,

Gep(t) = G p(8) + 26B p(8) & (obe)

Here the functions kaft) are the strain components for the basic

deformation x,(t), and the functions E, y(t) are defined by

By, (8) 0%, (8) - ox, (£). Bu, (¢)




Cl1=66 10
We now assume that the functional Fk 2 1s particularly

dependent on the valus of G (t-'c) and its time derivatives

at T =0, and is a continuous functional of G (t-“l.') over the

range 0 < t < o0, Using the notation

*(0) _ o* *Q) | a* m
Goq Goq (8] s Goq a7, (8)/ath (446)

we suppose that Fk‘t may be expressed as the sum of

a number of terms, each of which is the product of a differen-
tiable function f_, say, of Gpé”) (£=041,24444), and a continu~
ous functional &, say, of qu(t-q) over the range 0 < T <

Then,

Fgleh (t-m] = 2 fv(G;é“))d)v[qu(t-'r)] N %
=o =0

Using Taylor's theorem, we have, with (L.4) and the neglect of
terms of order higher than the first in e,

*(p) (1) () *(n)
£,Ggt ") = 2,6k + 2 s B ar /00 "I o (4:8)

P =0
In (4,8) we use the notation
(0) . (TH
Epg = Bpg(t) »  Epg dp‘qu(t)/dt“" . (%+49)

By using the integral representation for continuous
functionals, it is seen that neglecting terms of order 32, the

functional <I> may be expressed in the form

¢V[qu(t-'c)] =9 [G (t--t)]
=0 3 -O

Wia S . '
+ € o [G (t-{); T]urs(t-‘t)&ro (14-.10)

I

g
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By using (4.8) and (4.10) in (4.7), and again neglecting
terms of order 32, we see that Fk& is expressible in the form

% o
Fk&[qu(t-19] = kaijq(t-¢)]

=0 1=0

o0
s 3 Agis[qu(tLﬂ:); e 1m0 (v)

+eI Kk&'s[Gpg(t 5;,(}("'), 'r:]E g(t=maTe (He1l)

The constitutive equation for small deformations super-
imposed on large deformations is now obtained by using Eqse (4e3)
and (%,11) in (4.2), again neglecting terms of order e2. Since
e was Introduced only to facillitate the linearization process,
it will be omitted after this stepj ie.es we take €=1 with the
stipulation that the displacement gradients and their derivatives
are small. The linearized equation is then

ax, (t) ax,(t) au, (t) 8x,(t)

dp3(t) = [ oX, ok, & ok,  oXy
ox, (t) aud(t) 0o
+ ok, — aXL ]Fk—L[qu(t'T)]
T =0
ax, (t) ax.(t) oo
* a)ick a££ ﬁ‘ﬁs[G (t-'v>s GI(,Q)JE,E‘;’&)
ax, (t) ax (t) B
-1 (w) , .
+ axk f KK’&I‘S[Gpéq(t-E)’Gp‘; ,.T]Ers.(t-ﬂ;)%:; |
N .12

Since the stress tensor is symetric, then Fyp=F,,
A =af¥) | ana Ky =Ky . Stnce E(V)=E(V), there 1s no
loss of generality in taking Ak}i) = k'?.sr and Kk&rs Kk&s as well,
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5« Materials with fading memory

If the basic deformation x,(X ,t) were time=-independent,
the functionals F, Aig;%, and Ky 5 in Eqe (4412) would reduce
to ordinary functions of the constant strain components qu.
The basic deformation is, of course, necessarily time-dependent,
because it must involve a transition from the undeformed state
to whatever fixed state 1s contemplated. However, the same
simplification 1s achieved if a material with fading memory is
held in a fixed state of deformation for so long that the original
deforming process 1s forgotten,

Let the basic deformation xi(Xp,t) in Eqe (4.1) be one
in which the body remains in a fixed state xi(Xp) after time
t=05 1.ee
' xi(xp,t) = xi(xp), t > 0. (5.1)

Using the notation c-pq(t) for the strain histories, as before,
let qu denote the constant strains assoclated with the fixed
deformation xi(xp). Since qu(t) = Gpq for t>0, then the
derivatives Gég) (p#0) in Eqe (4¢12) all vanish.

We assume that after a sufficient amount of time has
elapsed, the deformation history before t=0 has an arbitrarily
-small effect on the stresse This assumption requires that the
following condition be satisfied by the functionals Fk{'which
appear in Eqe (%.2):

00. . o
Un {Fyyle (6= + & (t-9] - Fy,la +28 (-]} = 0.
t =00 . 0 4 R 'rc=10 (5.2)

As a particular case of Eq. (5e2), we have
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As indicated, the functionals reduce to functions of the constant

values qu in this case. By considering the linearized form of

Eqe (542), 1.e. the form corresponding to Eqe (%.12), it can be

showvn that the functionals A(Jil, and Kijk& also reduce to

functions of qu at large times,

When the deformation has been held fixed long enough that
the history before t=0 has no perceptible effect, the functionals
Fij’ Aigi&,-and Kidk%'may be replaced by thelr limiting forms,
which are functions. The constitutive equation (4.12) then

assumes the form

dx, 8x aul(t) 8x; 8x; Bu (t)
9138) = 3¢ 7%y * o 55(‘%/* 5%, 'aJx""]Fk&(qu)

x, 0x
(¥) (v)
* 5% XLZ Ak (Gpg) g ()

oo

+ £ Kk&rS(qu’T)ErS(t;T)dT] . (50,"')

Here x4 denotes the basic steady deformation, with associated

strain components qu.
In passing, ve note that if u,; is steady, then the combina-

tion x1+u1 can be regarded as a nev steady deformation with no

unsteady part superimposed, The stress given by Eqe (5.) must

be the same; whichever way the deformation is regarded. From

this consideration, we find after some manipulation that the

following relation must be satisfiedt
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( ? oF, ,(G_ )
0) = 5 ———hie—Rd

In the remainder of this paper we will consider only
those materials and deformations f or which Eqe (5.4) is valid.
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In Sections 2 to 5 we have developed the constitutive
equation for small dynamic deformations superimposed on large
steady deformations in materials with fading memory., This was
done by specializing the constitutive equation for materials
with an unspecified type of memory. An alternative approach is
possible, In which it is assumed initially that the deformation
consists of a steady deformation xi(Xp) with a displacement field
ui(Xp,t) superimposed on it. It 1s then assumed that the stress
components depend on the deformation gradient;axp/axq and the
history of the displacement gradients aup(t)/qu, so that

dij(t) = fij[au;?;-10/axq 5 axp/bxq] . (6.1)
©=0
To find the restricted forms of fid which will satisfy
the rotation invariance principle, we consider a new total
deformation Ei(t) = Ei + Ei(t) related to the original total
deformation x,(t) = x; + u,(t) by a rigid rotation, i.e. by
Eqe (3+1)e The stress components corresponding to the new

deformation are given by
3 - u - H X, X )
ij(t) f”[aup(t m)/axq 5 axp/axq] (642)

The new stress components gij(t) must then be related to the

conponents dij(t) by the transformation (3.5)es By using Egs.
(6.1) and (6e2) in Eqe (3.5), and making use of Eq. (3.2), we
obtain

oo
fij[bup(tzgﬂ/bxq ; axp/bxq] .
©=0 (643)
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At this point, neither Ei nor ﬁi(t) have been defined,
Only their sum, ;i(t), has been defined by (3¢1). The nevw total
deformation Ei(t) can be decomposed into a steady part and an
unsteady part in either of two essentially different ways:
(1) the steady part Ei may be regarded as identical with the
steady part x; of the original deformation, in which case the
entire rigid motion is included in the unsteady part ﬁi(t),
(11) +he new steady part Ei may be related to Xy by a time~
independent rigid rotation, with Ei(t) related to u, (t) by the
same rotation,
In case (1), we take X;=x;o The displacement field u, (t)
is then defined by

Ty = K (8) = &y = ay (0)x,(8) & xy (6.4)

Equation (6.3) then becomes

w .
i‘ij[aup(t-;)r:)/axq ; axp/bxq]
T=

= a,,(t)a u(t)fm[apr(t-w)axr(t-'r)/axq - axp/axq 3 axp/axq].
©=0
(645)
By constructing the coefficients aij(t) from the gradients
axi(t)/bxj, as in Sectioh 3, ve find that fij must be expressible

in the form

ox, (t) ax,(t) 0o
f1y = 5% -géi F;{Iqu(Z-T) oxy /oK 1 (6,6)
T=
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When Eq. (546) 1s used in the basic invariance require-
ment (6.3), and Eqs. (3.1) and (3,2) are used to simplify the
resulting expression, it is found that the functionals F;j
must satisfy the condition
* 0 * = P -
FiJ[qu(t-m) ; axp/an] = FiJ[qu(t-x) 3 axp/bxq] s  (647)
T=0 T=
where the straln components qu(t) are defined by replacing
%, () vy Ei(t) in Eqe (3.8)s By making use of Egs. (3+1) and
(3+2), it 1s found that
qu(t) = G, () . (6.8)

We now consider case (ii)e. The coefficients 8y 4 in
Egse (3+1) and (3.2) are taken to be constants, and the new
steady deformation Ei is defined by

xi = aijxj . (6.9)

By using Eqse (648) and (649) in Eqe (647), we find that the
functionals Fij must be of such form that

= o * ©o,
| Fid[qu(t-19 3 axp/bxq] = Fij[qu(t-19 H apraxr/axq] o (6410)

t=0 T=0

By constructing the coefficients aij from the steady deformation
gradients axp/bxq in the manner described in Section 3, we find
that the functionals F;J depend on the gradients axp/bxq only
through the strain components qu defined in terms of thems. By
using this result in Eq. (6.6), and the result so obtained in
Eqe (641), we obtain finally
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ax,(t) ox,(t oo
o4(t) = i . g 2 Fk&[Gpélf;-r) § Gpgd o (6.11)

The displacement gradients aui(t)/%XJ enter into Eqe(6.11)
through axi(t)/bxj and qu(t-t).In general, the displacements
ui(tém) cannot be small throughout the entire history of deforma-
tion, since x; + uy(t=® = X; for v sufficiently larges. Thus,
before Eq. (6,11) can be linearized with respect to the disblace-
ment gradients, 1t 1s necessery to assume that the material has a
fading memory and that enough time has elapsed so that the unde-
formed state has been forgotten, With these assumptions,

Eqe (6.11) can be linearized, and the form obtained is again
given by Eqe (5.4).
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7. Svipetry of the materisl

Certain restrictions must be placed on the functions
Py Ai‘gl)w and Kyy in (5.4), if the constitutive equation is
to describe a material which has some symmetry in its undeformed
states Let X be a fixed rectangular Cartesian coordinate system,

related to the system x by an orthogonal transformation, so that

X3 = 8y4%y X; = 514%4 s ﬁi(t) = 8y 4uy(8)y (741)

where S1xSyk = Sk1S%j = V14 ° (7.2)

Defining.ﬁiq,.ﬁsq(t), and §§31t> as in Eqgs. (3.8),\(435), and

(4.9) respectively, but in terms of the new coordinates Ei and

ii’ and making use of Eqs. (7.1) and (7.2), we obtain

= _ =(v) _ (v)
The components Eij(t) of stress, measured with respect to the

system X, are given by

If g = “sijn is a symmetry transformation for the
material, then Eq. (5.4) remains valid if all quantities are
measured with respect to the system X instead of the system X
By using Eq. (5.4) and the corresponding expression for Zij(t)
to eliminate d;,(t) and Fij(t) from Eqe (7.4), a relation involv-
ing F, 4 A?ﬁt& , and Ky, s 15 obtained. From that relation and
Eqgse (7¢1) to (7.3), it can be shown after some manipulation
that the following conditions must be satisfied (for details
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of a similar manipulation in the isotropic case, see [1] or [2]):

FiJ(qu) = 5438 44F1e (Opg) s (745)
W) & = _
AN G IR 0) = syps ) @ 0 ) (76)

Kﬁrs (qu, T)Ersct-'ﬂ) = SikSyth&rs (G'pq,':)Ers (t-":) . (7.7)

These relations must be satisfied identically for each transforma-
tion s belonging to the group of symmetries of the materials In
the following section we will consider the consequences of

Egse (745) to (7.7) in the case of isotropic materialse.
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8. lsotropic materjalg

The symmetry group for én isotropic material 1s either
the full orthogonal group or the proper orthogonal group,
depending on whether the materlial has a center of symmetry or not.
Presence or absence of a center of symmetry is irrelevant in the
present context, however, because Eqs. (7.5) to (7.7) are satise
fled identically if the transformation is the central inversion,
lees if 843 % - bij’

Rivlin and Ericksen [4] have studied the implications of
an equation of the form (7.5)s. They have shown that if the
functions Fij are single-valued functions of the variables qu,
and if Eqe. (7.5) 1is satisfied for every orthogonal transformation

sy then the matrix F = IIF, [l can be expressed in terms of the

matrix G = "GiJ“ in the form

F = F, + g + F 6% (841)
Here I 1s the unit matrix ”biJ”. The scalar coefficients F_,F; ani
F, are single-valued functions of three basic orthogonal invari-
ants of G,

oA 2 _ 3 -

~

If, in (7.5), Fij is a polynomial* in its arguments, then F may
be expressed in the form (8.,1), with F y F,, and F, expressible

as polynomials in the invariants (3.2).

* We note that if Fij is a continuous functlon of qu, it may be
expressed as a polynomial as closely as desired in any closed
domaine.
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The limitations on KijrsErs(t-t) implied by (7.7) may

be obtained in more explicit form by considerations of tha type

used by Rivlin and Ericksen [4] and by Rivlin [5], We use the

notation
KiJ(G q’Ers) iJrs(qu)Ers ! (8.3

the dependence of E_ on t=t being understood. Then, Eqe (7.7)
may be written in the form

Kij(apq,ﬁis) = sikS}LKkL(quﬁErs) . (844t)

If we assume that Kijns is a polynomial in G q? 5° that Kij is

p
pq 804 Epgy linear in E, , it follows (Rivlin

[5]) that § = "Kij" may be expressed in the form

a polynomial in G

K= KE + K (5 + @) + K87 + 6%)
g ( EGN)G (845)
tr o
N—O KMN

The coefficients Kb, Ki, Ké and K, are polynomials in the
invariants (8.2), and functions of v « If these coefficients
are regarded as single~valued functions rather than polynomials,
Eqe (8e¢4) 1s still satisfied.

Since Eqes (7.6) 1is of the same form as Eqe (7.7), its
implications are analogous to those of (7.7)s We use the

notation

( ) (V)y o ,(v) (v)
13 @ oEry M) Aigrs(qu)E MAC I (846)

By an argument similar to that used in deriving (8.5), we find
that A(Y) - "Aig)“ can be expressed in the form



Cll=66 23

£(V) - Aév)E(v) + A§V)Q§(V)§+§E(V)) + A§V)(§(V)Ea+§2§(V))

~

+ M,I%:O a0 (br 8 MaMat (8,7)
The coefficients Agv), Aiv), A§V), and Agg) are polynomials in
the invariants (8.2). Again, the invariance requirements are
still satisfied if these coefficients are regarded as single~
valued functions rather than polynomials,

When Eqe (845) 1s used in (843), (847) is used in (8.6),

and (841), (843), and (846) are then used in Eq. (5.4), the
constitutive equation for isotropic materials is obtained. It

may be written as

dx, 0x au, (t) ax ax, ou,(t)
= 5%, o%; * T o, ¢ a1t * Pt + Foligpe)
i R RN N +a{ (3, gy +d )

3% 2 L3 "okpRgq g * ®2q%kp

+ Aév)(bkpG Arbpq + 2 uc}krarp)

2
(v) (oM N (v)
]

@
o
| 8

A

oX, o

>4

o0
} (f) [K0 ('r)bkpb&q + Kl(T)(bkpGJLq + a&qup)

=

+ K2(1:) (bkpc&rcrq + a,Lth,Grp)

Ry(® (@, @ B (t=m)av. (8.8)

M ) N-O Pqa” pq

Dependence of the scalar coefficients on tr g? (N=1,2,3) 1s

understood.
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Equation (8.8) can be written in a slightly simpler form.
As the first step, the displacement gradients are written in

terms of spatial derivatives, thus

au, (t) au,(t) 8x
s = ’38‘ . (9.1)
an axk 9 j

Here the derivatives axk/axj are deformation gradients for the
' besic steady deformation. By using (9.1) in the definition (4,5)

of qu, we obtain

X
e (t) (9.2)
p 0 q 13 ’

where eij is the classical straln tensor defined by

Q
| %
(@)

qu(t) =3

>

Efl(t) . au1(t)
axj axi

eij(t) = %[ ] L] (903)

The time-derivatives EH) are, from (9.2),

Pq
() ey o X4 2% (W
By’ (t) = -é-i;- a—x-i e’ (1) (9.4)
where W)
B -

el  (8) = dey y(8)/ath (945)
In the definition (4.9) of Eég), and now in Eqe (9.59), the
differentiation d/dt holds X, fixed., Thus

au, (t)
ek, (9:6)

When this expression is used in (9.5), terms arise which are

quadratic in the displacements, These will be neglected, Thus,



C11-66 25

in (9.9), d/dt may be regarded as the partial derivative with
Xy held fixed,

Next, consider the tensor g = ”gij"’ defined by

Q
o

. X X
gij = gii ﬁfg . (9.7)

By using this definition with Egs. (9.2), (9.4), and the defini-

(3]

tion (3.8) of G Q' Ve obtain the relations

P

i@ =g, wETM = MM, (9.8)
ox, 80X, N+l
5§§ 323 (@ ep = (7 gy (949)
80Xy 09Xy _(v).N _ (v) N+1
3%, Eiﬂfﬁ G = (ge' 778" Tyg s (9410)
Efi Efi aui(t) ax ox; du,(t)_ o

[axk ax&'P 5%, 5’5{1* 3%, "55%""](9. Died

= D8y by * By (D0 p + uy 3 (8085, 1 g0 (9010)

In the last equation, the notation aui/:axj = Uy has been used,
By meking use of Eqs. (9¢8) to (9.11), the constitutive

equation (8.8) can be written in the form

2 4

= 3
Og5(t) = Dogydyp * uy o (898 55+ uy p(830, J(Fog + Frg™ + Fog )iy

+ Z[A(()V)ge(v)g + A(v)(ge(v)g2 +
v ~ i d

! 25(V)§)

20

~

. .
+ 457 (ge{Mg3 + g3 (M) * L E AI\(I{\C)'cz-(e(")gI\H'l)gMJ'lli‘1

geg + Kl(T)[ge82+8298) + Ka(w)(geg3+s3eg)

o0
+ f[KO(T)
0

2 N+1, M+1
+ 3 (z)tr (e ) 1, 44,
M’N=OKMN eg g iy

(9.12)
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The time-~dependence of e and e(v)is understoods According to
(9.8), the scalar coefficients in (9,12) may be regarded as

functions of %y gN (N=1,2,3) rather than of tr EN (N=1,2,3).
The integration with respect to time in (9.12) is

integration with Xp held fixed. However, with neglect of terms

quadratic in the displacements, 1t may be regarded as an inte~-

gration holding Xy fixed.

3

By using the Cayley;Hamilton theorem, g~ may be expressed
as a linear combination of §2, g, and E} with coefficients which
are polynomials in the invariants tr gN (N=1,2,3)s Therefore
we may write

2 2

Fog ¥ Fig° *+ Fpg” = I+ fyg + 87 (9.13)

vhere f , fq, and f, are functions of tr gN (M1=14243)»

2
Denoting the integrand in Eq. (9.12) by kij and its mafrix
by E = ”kij“’ we see that E 1s a symmetric matrix polynomial in
the symmetric matrices g and €, linecr in e The scalar
coefficients are, of course, not necessarily polynomlalse.
According to Riviin [5], 5 may therefore be expressed in a form
sinilar to (8¢5)e In that expression we replace 5 by E, S by g
and E by e to get the desired resulte. Similarly, the summand in
(9412) can be erpressed in a form analogous to Eq. (8.7), by
replacing g by 5 and E by s in the latter expression. These

results, taken with Eq.(9,13), imply that Eqe (9.12) can be

reduced to the following form:
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Og5(6) = [byybyp+ g ( (604 p + uy ()0, JET + £1g + £o8 )

+ %[ac(:V)b 1x%54 * aEV) (3418 50784484

(v)
+ap (3418 38" 83481 n8mic)

2
v) N
+ M,I\ZI:=O aVIN (g )ij(g )kJL]ekL(t)

o0

o)

+ k() (b g5 8470 448 1n8nk)

2
1yN= ~ ~

The scalar coefficients are functions of tr gN (N=1,2,3).
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